• 0 Posts
  • 22 Comments
Joined 1 year ago
cake
Cake day: August 9th, 2023

help-circle

  • Also, PC gamers are loud, but they make up a pretty small portion of the market. There was a time when Intel’s server division made more revenue than all of AMD. Even now, AMD as a whole is only a little above that. That’s not even considering the OEM market, which is far, far larger than PC gamers.

    I got really annoyed with /r/buildapc. Everyone is a gamer and thinks they’re the center of the universe. They haven’t the faintest conception that someone would do a build for anything other than gaming and how that changes the choices.


  • Servers need very high uptime. Also, when something is documented to work a certain way, it had damn well better work as stated.

    Intel had a long reputation of solid engineering. Even when they were losing at both performance and performance per watt, they could still fall back on being steady. The 13th/14th gen degradation problems have shot that argument to hell, and server customers are jumping ship.




  • There’s more money investors wanting invest in wind, solar, or hydroelectric projects, than there are projects to invest it. The limiting factor isn’t money.

    Let’s say you have money to invest in the energy sector. You take a look at nuclear and find that while the regulatory environment is very high, it isn’t insurmountable. The Department of Energy has shown a willingness to sign off on new nuclear projects as long as you do your homework. It’s a lot, but it can be done.

    Next, you look at the history of building projects. The baseline for time to build is 5 years, but everyone knows this is a lie. That thing isn’t getting done for at least 7 years, often more like 10. Its budget will expand by about the same proportion. You won’t see a dime of profit until it’s done. If it can’t raise the money from either yourself or other investors to cover the shortfall, then it’s useless and your entire investment will be wiped out.

    The Westinghouse AP1000 design was hoped to get around some of the boutique engineering challenges of building nuclear in the past. It did not.

    If you instead invest into solar or wind, you’ll find some regulatory hurdles. Mainly from the local NIMBYs. The hookup agreements with the utility companies take some doing, but it’s not outrageous. Looking at the construction side of things, these projects are pretty much turnkey. They don’t require any specialized engineering (not the way nuclear does). They tend to get done on time and within budget.

    This, too has been studied. The average cost overrun of a solar megaproject is 1%. For wind, 13%, and it’s 20% for water. Want to know what it is for nuclear? It’s right near the top of the list at 120%. The only megaprojects on the list that do worse are Olympic Games and nuclear storage.

    With numbers like that, it’s no wonder investors are dumping their money into solar and wind.












  • Thousands of people buying rooftop panels was never going to be the best way towards a Water/Wind/Solar (WWS) future. Fitting panels to the roof has to work around the roof geometry and obstructions like vents. That makes every job a custom job. It also means thousands of small inverters rather than a few big ones.

    Compare that to setting up thousands of panels on racks in a field. As long as it’s relatively open and flat, you just slap those babies down. You haul in a few big inverters which are often built right into shipping containers that can just be placed on site, hooked up, and left there. Batteries need inverters, too, so if your project includes some storage, then you only need one set of inverters.

    I get the feeling of independence from the system that solar panels on the roof gives people, but it’s just not economically the best way to go. The insanely cheap dollars per MWh of solar is only seen when deploying them on a mass scale. That means roofs of commercial/industrial buildings or bigger.


  • The batteries needed are a lot less than you might think. Solar doesn’t work at night and the wind doesn’t always blow, but we have tons of regional weather data about how they overlap. From that, it’s possible to calculate the maximum historical lull where neither are providing enough. You then add enough storage to handle double that time period, and you’re good.

    Getting 95% coverage with this is a very achievable goal. That last 5% takes a lot more effort, but getting to 95% would be a massive reduction in CO2 output.



  • I think there’s a contingent of people who think nuclear is really, really cool. And it is cool. Splitting atoms to make power is undeniably awesome. That doesn’t make it sensible, though, and they don’t separate those two thoughts in their mind. Their solution is to double down on talking points designed for use against Greenpeace in the 90s rather than absorbing new information that changes the landscape.

    And then there’s a second group that isn’t even trying to argue in good faith. They “support” nuclear knowing it won’t go anywhere because it keeps fossil fuels in place.